# Mathematical Creation

By Henri Poincaré

The genesis of mathematical creation is a problem which should intensely interest the psychologist. It is the activity in which the human mind seems to take least from the outside world, in which it acts or seems to act only of itself and on itself, so that in studying the procedure of geometric thought we may hope to reach what is most essential in man’s mind…

A first fact should surprise us, or rather would surprise us if we were not so used to it. How does it happen there are people who do not understand mathematics? If mathematics invokes only the rules of logic, such as are accepted by all normal minds; if its evidence is based on principles common to all men, and that none could deny without being mad, how does it come about that so many persons are here __refractory__?

That not every one can invent is __nowise__ mysterious. That not every one can retain a demonstration once learned may also pass. But that not every one can understand mathematical reasoning when explained appears very surprising when we think of it. And yet those who can follow this reasoning only with difficulty are in the majority; that is undeniable, and will surely not be gainsaid by the experience of secondary-school teachers.

And further: how is error possible in mathematics? A sane mind should not be guilty of a logical fallacy, and yet there are very fine minds who do not trip in brief reasoning such as occurs in the ordinary doings of life, and who are incapable of following or repeating without error the mathematical demonstrations which are longer, but which after all are only an accumulation of brief reasoning wholly __analogous__ to those they make so easily. Need we add that mathematicians themselves are not __infallible__?…

As for myself, I must confess, I am absolutely incapable even of adding without mistakes… My memory is not bad, but it would be insufficient to make me a good chess-player. Why then does it not fail me in a difficult piece of mathematical reasoning where most chess-players would lose themselves? Evidently because it is guided by the general march of the reasoning. **A mathematical demonstration is not a simple juxtaposition of syllogisms, it is syllogisms placed in a certain order, and the order in which these elements are placed is much more important than the elements themselves.** If I have the feeling, the intuition, so to speak, of this order, so as to perceive at a glance the reasoning as a whole, I need no longer fear

__lest__I forget one of the elements, for each of them will take its

__allotted__place in the array, and that without any effort of memory on my part.

We know that this feeling, this __intuition__ of mathematical order, that makes us divine hidden harmonies and relations, cannot be possessed by every one. Some will not have either this __delicate__ feeling so difficult to define, or a strength of memory and attention beyond the ordinary, and then they will be absolutely incapable of understanding higher mathematics. Such are the majority. Others will have this feeling only in a slight degree, but they will be gifted with an uncommon memory and a great power of attention. They will learn by heart the details one after another; they can understand mathematics and sometimes make applications, but they cannot create. Others, finally, will possess in a less or greater degree the special intuition referred to, and then not only can they understand mathematics even if their memory is nothing extraordinary, but they may become creators and try to invent with more or less success according as this intuition is more or less developed in them.

In fact, what is mathematical creation? It does not consist in making new combinations with mathematical entities already known. Anyone could do that, but the combinations so made would be infinite in number and most of them absolutely without interest. To create consists precisely in not making useless combinations and in making those which are useful and which are only a small minority. Invention is __discernment__, choice.

It is time to __penetrate__ deeper and to see what goes on in the very soul of the mathematician. For this, I believe, I can do best by recalling memories of my own. But I shall limit myself to telling how I wrote my first memoir on Fuchsian functions. I beg the reader’s pardon; I am about to use some technical expressions, but they need not frighten him, for he is not obliged to understand them. I shall say, for example, that I have found the demonstration of such a theorem under such circumstances. This theorem will have a barbarous name, unfamiliar to many, but that is unimportant; **what is of interest for the psychologist is not the theorem but the circumstances.**

For fifteen days I __strove__ to prove that there could not be any functions like those I have since called Fuchsian functions. I was then very __ignorant__; every day I seated myself at my work table, stayed an hour or two, tried a great number of combinations and reached no results. One evening, __contrary__ to my custom, I drank black coffee and could not sleep. Ideas rose in crowds; I felt them __collide__ until pairs interlocked, so to speak, making a stable combination. By the next morning I had established the existence of a class of Fuchsian functions, those which come from the hypergeometric series; I had only to write out the results, which took but a few hours.

Then I wanted to represent these functions by the quotient of two series; this idea was perfectly conscious and __deliberate__, the analogy with elliptic functions guided me. I asked myself what properties these series must have if they existed, and I succeeded without difficulty in forming the series I have called theta-Fuchsian.

Just at this time I left Caen, where I was then living, to go on a geologic __excursion__ under the __auspices__ of the school of mines. The changes of travel made me forget my mathematical work. Having reached Coutances, we entered an __omnibus__ to go some place or other. At the moment when I put my foot on the step the idea came to me, without anything in my former thoughts seeming to have __paved__ the way for it, that the transformations I had used to define the Fuchsian functions were identical with those of non-Euclidean geometry. I did not verify the idea; I should not have had time, as, upon taking my seat in the omnibus, I went on with a conversation already commenced, but I felt a perfect certainty. On my return to Caen, for conscience’s sake I verified the result at my __leisure__.

Then I turned my attention to the study of some arithmetical questions apparently without much success and without a suspicion of any connection with my preceding researches. Disgusted with my failure, I went to spend a few days at the seaside, and thought of something else. One morning, walking on the __bluff__, the idea came to me, with just the same characteristics of brevity, suddenness and immediate certainty that the arithmetic transformations of indeterminate ternary quadratic forms were identical with those of non-Euclidean geometry.

Returned to Caen, I meditated on this result and deduced the consequences. The example of quadratic forms showed me that there were Fuchsian groups other than those corresponding to the hypergeometric series; I saw that I could apply to them the theory of theta-Fuchsian series and that consequently there existed Fuchsian functions other than those from the hypergeometric series, the ones I then knew. Naturally I set myself to form all these functions. I made a __systematic__ attack upon them and carried all the outworks, one after another. There was one, however, that still held out, whose fall would involve that of the whole place. But all my efforts only served at first the better to show me the difficulty, which indeed was something. All this work was perfectly conscious.

Thereupon I left for Mont-Valérien, where I was to go through my military service; so I was very differently occupied. One day, going along the street, the solution of the difficulty which had stopped me suddenly appeared to me. I did not try to go deep into it immediately, and only after my service did I again take up the question. I had all the elements and had only to arrange them and put them together. So I wrote out my final memoir at a single stroke and without difficulty.

I shall limit myself to this single example; it is useless to multiply them…

**Most striking at first is this appearance of sudden illumination, a manifest sign of long, unconscious prior work.** The role of this unconscious work in mathematical invention appears to me

__incontestable__, and traces of it would be found in other cases where it is less evident. Often when one works at a hard question, nothing good is accomplished at the first attack. Then one takes a rest, longer or shorter, and sits down anew to the work. During the first half-hour, as before, nothing is found, and then all of a sudden the decisive idea presents itself to the mind…

There is another __remark__ to be made about the conditions of this unconscious work; it is possible, and of a certainty it is only fruitful, if it is on the one hand preceded and on the other hand followed by a period of conscious work. These sudden inspirations (and the examples already cited prove this) never happen except after some days of voluntary effort which has appeared absolutely fruitless and whence nothing good seems to have come, where the way taken seems totally astray. These efforts then have not been as __sterile__ as one thinks; they have set agoing the unconscious machine and without them it would not have moved and would have produced nothing…

Such are the realities; now for the thoughts they force upon us. The unconscious, or, as we say, the __subliminal__ self plays an important role in mathematical creation; this follows from what we have said. But usually the subliminal self is considered as purely automatic. Now we have seen that mathematical work is not simply mechanical, that it could not be done by a machine, however perfect. It is not merely a question of applying rules, of making the most combinations possible according to certain fixed laws. The combinations so obtained would be exceedingly numerous, useless and cumbersome. **The true work of the inventor consists in choosing among these combinations so as to eliminate the useless ones or rather to avoid the trouble of making them, and the rules which must guide this choice are extremely fine and delicate. **It is almost impossible to state them precisely; they are felt rather than formulated. Under these conditions, how imagine a sieve capable of applying them mechanically?

A first hypothesis now presents itself; the subliminal self is in no way __inferior__ to the conscious self; it is not purely automatic; it is capable of discernment; it has __tact__, __delicacy__; it knows how to choose, to divine. What do I say? It knows better how to __divine__ than the conscious self,** since it succeeds where that has failed**. In a word, is not the subliminal self superior to the conscious self? You recognize the full importance of this question…

Is this affirmative answer forced upon us by the facts I have just given? I __confess__ that, for my part, I should hate to accept it. Re-examine the facts then and see if they are not compatible with another explanation.

It is certain that the combinations which present themselves to the mind in a sort of sudden illumination, after an unconscious working somewhat prolonged, are generally useful and fertile combinations, which seem the result of a first impression. Does it follow that the subliminal self, having divined by a delicate intuition that these combinations would be useful, has formed only these, or has it rather formed many others which were lacking in interest and have remained unconscious?

In this second way of looking at it, all the combinations would be formed in consequence of the automatism of the subliminal self, but only the interesting ones would break into the domain of __consciousness__. And this is still very mysterious. What is the cause that, among the thousand products of our unconscious activity, some are called to pass the threshold, while others remain below? Is it a simple chance which confers this privilege? Evidently not; among all the __stimuli__ of our senses, for example, only the most intense fix our attention, unless it has been drawn to them by other causes. More generally the privileged unconscious phenomena, those susceptible of becoming conscious, are those which, directly or indirectly, affect most profoundly our emotional sensibility.

It may be surprising to see emotional sensibility invoked à *propos* of mathematical demonstrations which, it would seem, can interest only the intellect. This would be to forget the feeling of mathematical beauty, of the harmony of numbers and forms, of geometric elegance. This is a true esthetic feeling that all real mathematicians know, and surely it belongs to emotional sensibility.

Now, what are the mathematic entities to which we attribute this character of beauty and elegance, and which are capable of developing in us a sort of __esthetic__ emotion? They are those whose elements are harmoniously __disposed__ so that the mind without effort can embrace their __totality__ while realizing the details. This harmony is at once a satisfaction of our esthetic needs and an aid to the mind, sustaining and guiding. And at the same time, in putting under our eyes a well-ordered whole, it makes us foresee a mathematical law… Thus it is this special esthetic sensibility which plays the role of the delicate __sieve__ of which I spoke, and that sufficiently explains why the one lacking it will never be a real creator.

Yet all the difficulties have not disappeared. The conscious self is narrowly limited, and as for the subliminal self we know not its limitations, and this is why we are not too __reluctant__ in supposing that it has been able in a short time to make more different combinations than the whole life of a conscious being could encompass. Yet these limitations exist. Is it likely that it is able to form all the possible combinations, whose number would frighten the imagination? Nevertheless that would seem necessary, because if it produces only a small part of these combinations, and if it makes them at random, there would be small chance that the *good,* the one we should choose, would be found among them.

Perhaps we ought to seek the explanation in that preliminary period of conscious work which always precedes all fruitful unconscious labor. Permit me a rough comparison. Figure the future elements of our combinations as something like the hooked atoms of Epicurus. During the complete repose of the mind, these atoms are motionless, they are, so to speak, hooked to the wall…

On the other hand, during a period of apparent rest and unconscious work, certain of them are detached from the wall and put in motion. They flash in every direction through the space (I was about to say the room) where they are enclosed, as would, for example, a swarm of gnats or, if you prefer a more learned comparison, like the molecules of gas in the kinematic theory of gases. Then their mutual impacts may produce new combinations.

What is the role of the __preliminary__ conscious work? It is evidently to __mobilize__ certain of these atoms, to unhook them from the wall and put them in swing. We think we have done no good, because we have moved these elements a thousand different ways in seeking to assemble them, and have found no satisfactory aggregate. But, after this shaking up imposed upon them by our will, these atoms do not return to their primitive rest. They freely continue their dance.

Now, our will did not choose them at random; it pursued a perfectly determined aim. The mobilized atoms are therefore not any atoms whatsoever; they are those from which we might reasonably expect the desired solution. Then the mobilized atoms undergo impacts which make them enter into combinations among themselves or with other atoms at rest which they struck against in their course. Again I beg pardon, my comparison is very rough, but I scarcely know how otherwise to make my thought understood.

However it may be, the only combinations that have a chance of forming are those where at least one of the elements is one of those atoms freely chosen by our will. Now, it is evidently among these that is found what I called the *good combination.* Perhaps this is a way of lessening the paradoxical in the original hypothesis…

I shall make a last remark: when above I made certain personal observations, I spoke of a night of excitement when I worked in spite of myself. Such cases are frequent, and it is not necessary that the abnormal cerebral activity be caused by a physical excitant as in that I mentioned. It seems, in such cases, that one is present at his own unconscious work, made partially perceptible to the over-excited consciousness, yet without having changed its nature. Then we vaguely comprehend what distinguishes the two mechanisms or, if you wish, the working methods of the two egos. And the psychologic observations I have been able thus to make seem to me to confirm in their general outlines the views I have given.

Surely they have need of [confirmation], for they are and remain in spite of all very hypothetical: the interest of the questions is so great that I do not repent of having submitted them to the reader.

Posted on 2011-12-31, in Academy and tagged Academy, Mathematics. Bookmark the permalink. 留下评论.

## 留下评论

## Comments 0